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Abstract

Various forms of implicit finite difference schemes are examined from the
point of view of Newton’s method or modified forms of Newton’s method
for steady state convergence. The class of schemes examined include cen-
tral plus artificial dissipation methods, upwind/TVD schemes, and splitting
methods (e.g. flux vector, upper/lower and eigensystem decompositions).
The paper mainly concentrates on analysis of the schemes and addresses
issues such as vectorization, efficiency and accuracy. The effect of approxi-
mate factorization, artificial dissipation and operator splitting on stability
will be discussed. The emphasis will be on the Euler equations.
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1.1 Introduction

1.1.1 Discussion

Implicit finite difference techniques have taken the dominant role in the
computation of fluid dynamics and aerodynamics. Over a decade ago one
could have made the observation that a substantial portion of all computa-
tional results were obtained using explicit techniques such as Lax-Wendroft
or most likely MacCormack’s scheme [1], (the remainder came under the
classification of analytic, spectral or perturbation schemes). At that time
the limitations of computer speed and algorithm development made the ex-
plicit schemes the most practical. Explicit schemes are easy to program, re-
quiring no additional numerical algorithms. In contrast an implicit scheme
invariably leads to the need to solve either linear or nonlinear systems
of equations. Linear algebra plays a major role in the solution process,
where large sparse (but usually structured) matrices are inverted. Until
recently, Gaussian elimination (or LU decompositions such as the Thomas
algorithm) was commonly used to invert the matrices. With the advent
of parallel and vector computer architectures, sparse matrix solvers may
be the optimal way to proceed. Methods such as cyclic reduction, nested
dissection, and sparse factorization techniques may take over especially if
they can be more efficient on the new generation of high speed processors.

For a given time accuracy, explicit methods can require significantly less
computational operations then implicit schemes and at least at first glance
explicit methods seem to be easier to vectorize. Implicit methods have the
advantage of being typically unconditionally stable (in terms of linear anal-
ysis) as compared with limited stability for explicit schemes. In cases where
time accuracy restricts one to time steps on the order of or less than the
stability bounds of an explicit method, such methods may be more efficient
than a corresponding implicit scheme. In general though, even within the
limit of time accuracy, explicit schemes can be more restrictive in terms of
the allowable time step than is warranted by the time scales of the solution.
For instance, boundary layer mesh scales may be more restrictive than the
spatial scales of a plunging body. Implicit schemes have been used more
extensively for steady state problems where the restriction of a time step
of integration commensurate with the physics of a problem is ignored in
the hope of converging the solution more rapidly. In fact, both explicit
and implicit schemes commonly employ time steps which vary across the
physical domain (local time steps) so that time accuracy is completely lost.
In these cases, implicit schemes have an advantage over explicit schemes.
The one exception where explicit based schemes have performed as well or
better than implicit schemes for steady state is in the case of multigrid ac-
celeration of multi-stage integration, see [1, 2]. Multigrid has been applied
to both inviscid [1] and viscous cases [3] and has even been analyzed for
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unsteady applications [4]. It should be noted that even in those schemes
some form of an implicit operator is used (residual averaging).

1.1.2 Equations

The methods by which schemes are made implicit can take a wide variety
of forms in terms of efficiency, consistency, accuracy and resulting stability
and convergence. In this paper we shall examine various forms of implicit
algorithms which can be applied to the compressible Euler and Navier-
Stokes equations. The starting point is a set of partial differential equations,
(in this case the Euler equations in conservation law form)

0:Q + 0,E + 8,F +8,G =0 (1.1)
where
P pu pv pw
pu pu® +p pvu puwu
Q=1 pv |, E= puv , F=| pp?+p |, F= pwu
pw puw porw pw? +p
e u(e + p) v(e+p) w(e + p)

(1.2)

Pressure is related to the conservative flow variables, (), by the equation
of state

p=(y-1) (e - %ﬂ(u2 +° +w2))
where + is the ratio of specific heats, generally taken as 1.4. The speed of
sound is a which for ideal fluids is given by, a? = yp/p.
In the presentation below we will periodically be switching between the
full nonlinear system given above and various reductions and simplifica-
tions. In some cases we will just consider the one-dimensional (v = w = 0)

and two-dimensional forms (w = 0). We shall also employ a representative
scalar form where we have

ur + f(u) =0

with either f(u) = au, + buy + cu, the scalar wave equation, or f(u) a
general nonlinear function of u, which could be multi-dimensional, having
similar definitions as needed.

If we examine the 1 — D wave equation

U +u, =0
and apply Fourier analysis u(z,t) = w(t)e®®, for spatial difference opera-
tors, such as central differencing we have
Ujp1 — Uj1 1sin Az

2Az oWt Az

Ut + Uy = Ut + U = Us + w=w+Aw=0
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or for 1°¢ order backward

U —U; 1
U+ Uy = U + Vouy; = u + 30— —
w; _I_l—coseAz::—z 51n9Aa:,w = w, + )\Z,w =0

When we talk of the differencing signature we will be referring to the
eigenvalue )\, associated with the choice of spatial differencing. This is gen-
erally termed the semi-discrete eigenvalue of the partial differential equa-
tion. In the above, A, can be either pure imaginary or complex, which
indicates that we should consider complex f(u) in our analysis since spa-
tial differences will produce complex eigensystems.

There are a number of issues to be examined when developing an im-
plicit algorithm for Eq. (1.1). First, a spatial differencing scheme must be
chosen. Within the framework of finite difference schemes we shall con-
sider central and upwind differencing of the flux terms, 0,F and §,F. In
Section 1.2 , we shall motivate the choices, discuss various splittings of the
flux vectors E and F' which lead to flux vector and flux difference schemes
and provide the framework for the implicit methods.

As the second component in developing an implicit scheme, we adopt
a Newton like approach to the development, assessment and analysis of
implicit operators. In Section 1.3 we discuss the equivalence of an implicit
operator to an approximate Newton scheme. Various approximations are
analyzed using an eigensystem analysis technique introduced in [5], which is
a periodic Neumann-like approach where the system coupling is maintained
leading to generalized eigensolutions.

1.2 Newton’s Method

Newton’s method can be used to understand the approximations used in
implicit schemes. If we start out looking at Newton’s method for the fixed
point problem

F(Q)=0 (1.3)

we first do a Taylor series expansion with remainder of the function F(Q)
about some iteration level @™ which leads to

oF™ O?F" 9
F =F(Q™") + — -Q")+ — - Q" 1.4
@=FQ)+ 55 @-Q)+ 50, @-QV (L4
where Q)* lies in the solution interval between @) and @™. Note that by %n
we mean the matrix Jacobian of F(Q) with respect to @ evaluated at @™.
Dropping the remainder term (leading to a first order approximation)

and evaluating Eq. (1.4) at n + 1, assuming F(Q™') & 0 gives the iterative
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scheme .
oF™|
n+1 — n__ |77 F n
o = o[58 r@n
which is Newton method for a nonlinear system.
It is easy to show that Newton’s method is quadratically convergent for
any initial solution in the domain of attraction. Using the scalar form of

Eq. (1.3), Eq. (1.4)

= g(u") (1.5)
let

f(v)=0: v theroot
The iterative scheme Eq. (1.5) is convergent if |¢'(u)| < 1. We have

o P
70 = Ty

Expanding g(u™) in a Taylor series as above, with ¢ between u™ and v,

o) = o) + /@) —v) + L0y (L)

Letting the error be defined as e = u™ — v and using g(v) = v, and

we have

g'(v) = 0 we have

which shows quadratic convergence.
One of the most commonly used implicit schemes is the 1% order Euler
implicit method. Writting Eq. (1.1) for now as

Qt+F(Q):O

we have (@™ — gn
@9 _ _re (L)
with h = At.
The function F(Q) is nonlinear in ) and therefore we linearize Eq. (1.7)
about time level n + 1 which results in
1 OF™
I+ — | AQ" = —-F(Q"
l "t a0 ] Q (@)
with AQ™ = (@™ — @Q™), the so called “delta” form of the implicit scheme.
Rearranging terms we get

1 oF™

PP [P
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which in the limit as A — oo reduces to Eq. (1.4), Newton’s method. For
a finite A we have an approximate Newton scheme.

Analyzing the scalar form of the Euler implicit scheme as we did for full
Newton, we have

hf(u")

Uy w)=0: ul=yr— —2 71 _
+ f(u) =0 L+ hf'(u)

= g(u")
again letting
f(v)=0: v theroot

Continuing as before

) ()
o BT T

g(u)=1-

(1.8)

Using Eq. (1.6), f(v) = 0,g9(v) = v and Eq. (1.8) evaluated at v we have

1

g'(v) = TThf(o) o(h)

which gives

We will consider f'(u) to be either real or complex (it could be complex
if f(u) is derived from a differential operator). Note then that for small
h : o(h) = 1 and convergence is linear, but as A — oo : o(h) — 0 and we
approach quadratic convergence.

As the above example demonstrates, approximations to Newton’s method
can lead to slower convergence, and in fact sometimes instability (although
we shall restrict ourselves to examining schemes which are stable). In
general, an implicit scheme has some equivalence to a modified Newton’s
method and we shall be analyzing schemes from that point of view.

As we have seen the Euler implicit scheme is a good approximation to
Newton’s method producing good convergence characteristics for large time
steps. Other approximations usually inhibit the convergence and we shall
be examining various forms below. There is also a class of problems where
we are interested in time accurate computations. In those cases, though,
we usually start with an initial solution which generates a transient which
is hopefully eliminated at some time and then an accurate resolution of the
time variations is obtained. One candidate would be the 2"¢ order accurate
trapezoidal scheme, here written for the scalar equation us + f(u) = 0 as

W )+ f)
—+ 5 =0
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which after expanding f(u™!) = f(u™) + f/(u™)(u™ — u™) + O(h?) leads

to the 2" order scheme

un+1 _.n th(un)

= hpm 9

For this we have

2hf(u) | 2hf"(u)f(w)

9’(u) =1- 21 hf’(u) [2 + hf’(u)]

where using Eq. (1.6), f(v) = 0 and g(v) = v gives

e"tl = —em & (e")2
2
which is nonconvergence, i.e. there is no reduction in the error with it-
eration. In general the trapezoidal scheme is unsuitable for steady-state
and usually not desirable for time accurate problems because of this lack
of error reduction.

1.3 Factorizations, Splitting And Approxi-
mations

Applying the Euler implicit time differencing to the two-dimensional form
of the Euler equations (1.1) we have

(@' —Qm)

n+1 n+1 __
r +E 4+ =0

Linearizing the fluxes gives
E™ = B4 A™(Q - Q")+ 0 ((Q™ - Q"))
Fn-l—l — fm T Bn (Qn—}—l o Qn) + 0 ((Qn—}—l . Qn)2)

n n .
o8 B = 2E" are given by

where the Jacobian matrices A = 5g Or )

0 Kz Ky 0
—uf + k9> 8 — (v — 2)kzu Kyt — (7 — Dkgv (7 — 1)Ky
—v0 + ky¢? kv — (7 —Dryu 00— (y—2)kw (v — 1)Ky
0[¢* — a1]  kgar — (v — 1ub  Kya1 — (v — 1)vb ~é

with a1 = v(e/p) — ¢%, 0 = kou + kv, ¢* = 3(y — 1)(v® + v?), and
ke =1, ky =0for Aor k, =0, kK, =1 for B. These are 3 x 3 matrices in
one-dimension (1-D), 4 x 4 in 2-D, and 5 x 5 in 3-D. Their exact form for
the Euler equations can be found in numerous papers, e.g. [6].
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Using the “delta” form leads to
I+ h8. A"+ h8,B™ (Q"" — Q") = —h(&E" + 6,F")  (1.9)

where 6 represents a derivative operator which can be either analytic or
numerical.

Assuming the use of 2" order central differences for §, the solution of
Eq. (1.9) requires the inversion of a large sparse banded matrix.

1.3.1 Matrix Form of Unfactored Algorithm

If central differences are used in Eq. (1.9) it is easy to show that the im-
plicit algorithm produces a large banded system of algebraic equations. Let
written as the mesh size in z be Jmaz and in y by Kmaz. We choose an
ordering of the data with the 7 index running first and the & index second,
other orderings are just permutations of the data. Then the banded matrix
is a (Jmaz- Kmaz-4) x (Jmaz - Kmaz-4) rectangular matrix of the form

The matrix is sparse but it would be very expensive (computation-
ally) to solve the algebraic system. For instance, for a reasonable two-
dimensional calculation of transonic flow past an airfoil we could use ap-
proximately 80 points in the z direction and 40 points in the y direction.
The resulting algebraic system i1s a 12,800 x 12,800 matrix problem to be
solved and although we could take advantage of its banded sparse structure
it would still be very costly in both CPU time and storage.

1.3.2 Approximate Factorization

As we have seen, the integration of the full two-dimensional operator is
too expensive. One way to simplify the solution process is to introduce an
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approximate factorization of the two-dimensional operator into two one-
dimensional operators. The implicit side (left hand) of Eq. (1.9) can be
written as

[l + hé,A™ + h6,B"] AQ"™ =
[I +hé6,A"  [I+ h6,B™ AQ™ — h*6,A"6,B*AQ™ (1.10)
The cross term (h? term) is second order in time since AQ™ is O(h).
It can therefore be neglected without degrading the time accuracy of any

second order scheme which we may choose.
The resulting factored form of the algorithm is

I + hé, A" [I + h6,B"| AQ™ = —h [6,E™ + 6,F"] (1.11)

We now have two implicit operators each of which is block tridiagonal.
The structure of the block tridiagonal matrix is

The solution algorithm now consists of two one-dimensional sweeps, one
in the z and one in the y direction. The block matrix size is now at most
(max[Jmaz, Kmaz]-4) X (max[Jmaz, Kmaz]-4). Each step requires the
solution of a linear system involving a block tridiagonal which is solved by
block LUD (lower-upper decomposition). The resulting solution process is
much more economical than the unfactored algorithm in terms of computer
storage and CPU time.

1.3.3 Newton Scalar Analysis of Factored Implicit
Scheme

The use of factorization produces an efficient and practical algorithm, but
as we shall see the use of the factorization leads to a reduction in the
convergence properties and sometimes stability of the resulting algorithm.
First we shall use the scalar Newton analysis as above and then introduce
a model system analysis which retains the structure of the Euler equations.
A representative scalar model of the factored algorithm 1is

w + filu) + folu) = w4 r(u) = 0
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which leads to
1+ R+ hfu)] (™ —w) = —hr(w®)  (1.12)

where we are seeking solutions to r(v) = 0. Note that the “delta form”
guarantees that the steady solution r(v) = 0 is satisfied independent of h
(At). We recast Eq. (1.12) as

hr(u™)
un—i—l N =g 'u,"
T A+ ey~ 7
o hr'(u)
q'(u) =1 — ammraneeny T
Wor(u) fl(u) Ko ()£ (u)

A PA+AR@] T TrAR @ +hi e

Using the definitions and Eq. (1.6) of Section 1.2, we have

e™tt = o(h)e™ + g”2ﬂ(e")2
with
= L EAGAR)
[1+hfi(v)][1 + hfa(v)]

Now for real or complex f;(v) and fy(v) the coefficient o(h) of e is
bounded by 1 for all A and as b — oo , o(h) — 1 showing that for large h
we approach nonconvergence. For small & it can be shown that o(h) < 1
and the scheme does converge and in fact there is an optimal A for maximum

convergence.
We can next look at the equivalent of a three-dimensional factorization
using

u + fi(u) + fo(u) + fa(u) = we +r(u) =0

Forming the iterative scheme

ntl _ hr(u™) = g(u
[1+Rfi(u)][1 + Afa(um)][1 + hfs(un)]

U

")

which gives

with

o(h) =

1+h% £ (v) £ (v)+12 5 (v) £5 (v) +h2 £1 () £5(0) +R° £ (v) £ (v) £5 (v)
(1+hf{(v)][1+hf3(0)][1+Rf5(v)]
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Now again in this case we have o(h) — 1 as h — oo, but in the case
of complex f; we also have that for some A > h. : o(h) > 1 which im-
plies that the three-dimensional factored algorithm is at best conditionally
stable. In fact, consider the three-dimensional wave equation solved using
second order central differences. In that case, the differencing signature
(X's) produces pure imaginary f; and the scheme would then be uncondi-
tionally unstable. Any real part occurring in the f; would be associated
with dissipative differencing or the addition of a dissipative term, see dis-
cussion on artificial dissipation below.

1.3.4 Newton System Analysis of Factored Implicit
Scheme

The scalar analysis presented above provides guidelines for algorithm choices
and gives useful information about the characteristics of the resulting schemes.
We can go one step further in understanding the application to systems,
such as the Euler equations, by employing an analysis technique which
maintains the system structure, see [5]. As an example of the usefulness of
such an analysis, consider Eq. (1.9). The left hand side of that equation
could be reduced if we could simultaneously diagonalize A and B, thereby
reducing the system to 4 scalar operators instead of a 4 x 4 block operator.
This can not be done since A and B do not commute ( they don’t have a
common set of eigenvectors). For the unfactored algorithm this complicated
the computational work, but in the case of the factored algorithm it also
has an impact on the stability and accuracy since the order of factorization,
see Eq. (1.10), can produce a cross term of either 2§, A"8,B™ (Q™** — Q™)
or h%?8,B"8,A™ (Q™! — Q™) which can be significantly different. A linear
scalar analysis of a model equation could not detect the effect of such a
term.

The Newton system analysis as described below can provide a very use-
ful tool to help in the development and choice of numerical algorithms for
the Euler and Navier-Stokes equations. Jespersen and Pulliam [5] exam-
ined the effect of using approximate Jacobians in the implicit operator for
flux split schemes, see Section 1.4, and showed limited stability bounds for
approximate forms. Anderson [7] employed the analysis to examine various
approximate factorizations for stability. Barth [8, 9] examined various ap-
proximate Jacobians for Riemann solvers and MUSCL differencing schemes
and in [10] he employed the analysis to examine new splittings of the Euler
fluxes to produce a class of efficient implicit solvers.

The system analysis as outlined in [5] retains the system matrix form
of the equations while applying Fourier analysis. Recast Eq. (1.11) as

MQ™) (@™ — Q")+ = [I + h6,A"[I + h6,B™] (@™ — Q™)
= —h(6,E™ + 6,F™) := P(Q")
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Rearranging terms
Q" =Q"+ M(Q")'P(Q™) = G(Q)

we can examine the stability and convergence by looking at G'(@Q™). At

steady-state G(Q*) = 0 and G'(Q*) = I + M(Q*) ' P'(Q*) so that we have

MG): [M(Q%) + P'(@)]w = AM(Q" )
Lz = MKT

The analysis now includes the full system with L = M+ P and K = M.
For the unfactored scheme L = M + P = I , for the factored scheme
L=M-+P =1+ cross term error and in other cases M + P may involve
approximate flux Jacobians, different spatial operators on the implicit M
and explicit P sides and other approximations to the implicit operator. In
the best case L = M + P = ] and as h — oo we have full Newton.

Considering constant in space and time A, B, and C, let 7 = ¢*(/6+ké+la)g
for Fourier analysis and replace derivatives by their Fourier signature, e.g.
8,0 = i(sinfAz/Az) w = A, w.

Combining terms we have
Iw=)Kw

where I and K are functions of 6, ¢ and a. A generalized eigenvalue
problem is then solved over a spectrum of wave numbers 8, ¢, a. It should
be stressed that this analysis is by no means the nost general possible. One
has to choose a finite spectrum of wave numbers, the assumption of constant
in space and time A, B, and C and periodicity is another limiting factor.
The analysis, though, does provide a next step past linear scalar analysis
since the effect of the coupled system enters in through the eigensystem
(eigenvalues and eigenvectors) of A, B, and C.

1.3.5 Artificial Dissipation

In solving practical problems with central difference schemes artificial dis-
sipation [11] must be added to ensure stability and enhance robustness.
There are many forms of artificial dissipation and these is an equivalence
between upwind schemes and forms of artificial dissipation, see [11]. We
consider artificial dissipation here in reference to the way it modifies the
A's associated with the spatial differencing. Artificial dissipation applied
to both the explicit and implicit operators can have the form

[I + hé, A" — RDL][I + hé,B™ — kD3] (@™ — Q") =
—h[6,E™ + 6,F"] — h[ D + D]
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Figure 1.1: Newton System Analysis for 3D Factored Scheme

where for our purposes here we choose

D: = —€,(VoA;)? D= -V, A,

with, for example,

Az

k — Ujk

Ui
Vm Uj e = and AI Uj ke = J+1A:I} (113)

The effect of the artificial dissipation is to add a real part to the Fourier
signature of the differencing eigenvalues. The coefficients €, and ¢; are
usually chosen to be order 1. An example of Newton system analysis for
the 3D factored 1°* order Euler implicit schemes is given in Fig. 1.1. A
typical result without artificial dissipation and with artificial dissipation is
shown. The addition of the dissipation produces a stability region, while
the case of no dissipation is unconditionally unstable, as expected. The
linear analysis result of instability for the three-dimensional factored al-
gorithm is well known and has often been pointed out as a weakness of
the factored schemes. In practice, though, for nonlinear problems in the
presence of some form of dissipation (whether it is added artificial or in-
herent numerical, such as in upwind schemes, or physical resulting from
resolved viscous terms) the algorithm has never behaved any more restric-
tiely than its two-dimensional linearly unconditionally stable counterpart.
As we shall see below, there are alternative schemes which avoid the un-
conditional stability, but in practical problems they behave no differently
than the three-dimensional factored scheme.
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1.4 Flux-Vector Splitting

The concept of splitting operators or fluxes based on the eigensystem of
the Euler equations leads naturally to the flux vector or flux difference
split schemes which are currently the most popular in terms of research
and application to shock capturing methods. One of the earliest schemes is
due to Steger and Warming [12] where they constructed new fluxes F'*, F~
which were upwind differenced in a stable fashion based on the sign of the
eigenvalues of the Jacobians At A~

The approach taken is to split the eigenvalue matrix A of the flux Jaco-
bians into two matrices, one with all positive elements and the other with
all negative elements. Then the similarity transformations T, or T, are
used to form new matrices A*, A~ and B*, B~. Formally,

A=TAT," =To(AF + AT = AT + A
with
A:I: — Am + |A$|
* 2
Here, |A| implies that we take the absolute values of the elements of A.
The two matrices, AT and A~ have by construction all nonnegative and all
nonpositive eigenvalues, respectively.
New flux vectors can be constructed as
E= AQ=(At"+A)Q=E"+E~
F= BQ=(B*"+B)Q=F"+F~
A general form of the flux vector can be written as

2(’}/ — 1))\1 + )\3 + )\4

P P 2(y — DAu+ Az(u+¢) + da(u —¢)
2 2(’}’ — 1))\1’0 + )\3’1] + )\4’1}
(7= DM + %) + Qa/2l(w + € + 7]+ (ha/2)[(u — O +07] +
where w = % with Ay = u, A3 = u+ ¢, and Ay = u — ¢ recovering

the flux vector E of Eq. (1.2).

The flux vectors F'*, F~ are formed by inserting A; = A\ and )\; = ],
respectively, where for example \f = (); £ |\])/2.

The Steger-Warming flux splitting suffers from discontinuous derivatives
of the fluxes at zeros of the eigenvalues (i.e. stagnation or sonic points)
and one can smooth out the discontinuities by the modification Af = (}; +
(A2 + 62)%/2 for small e. An alternate flux splitting is proposed by Van Leer
[13] where F* are given in terms of a local one-dimensional Mach number

M = u where

Ft = F, F =0 forM<1
Ft = 0, FF=F forM< -1
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and for |[M| < 1

fi
7t FElly —]}ﬂ):é +2¢] /v
FEU(y = Du £ 2¢)2/2(y* — 1) +v*/2]

with f*¥ = 4pc[(M +1)/2]>. This flux is continuously differentiable at
sonic and stagnation points.

The splitting of the fluxes into terms with Jacobians with either all
positive or all negative characteristic speeds allows us to choose upwind
differences for each operator. For the positive terms a backward difference
can be used and for the negative terms a forward difference is applied.
Different type of spatial differencing can now be used for each of the new
flux vectors. The one-sided difference operators are usually either first order
accurate, Eq. (1.13), or second order accurate

3 1
S Uik — 2Uj—1k T 5 Uj—2k

Az

3 1
—5 Uik T 2Ujp1k — 5 Ujiak

Az

8Jujn =

b _
by Ujk =

An unfactored 1% order Euler implicit algorithm can be written as
I+h88 AT +6SA- + 6B + 6B +8:C +61C7] (@™ - Q") =
—h (S8BT + 6B+ & F* + §]F~ 4+ 8G* +6/G7) = R

where, e.g., AZ is the flux Jacobian of E*. Note that A* * A% and in fact
if A* were used, instability could could result, see [12] and [5]. The full
unfactored algorithm can be reduced by factoring as we did before. One
possibility is a three-factor scheme

I+h8P A% + 61A7| [I+88B* + 6B~ [+ 6:C* + 60| (Q" — Q") = R"

which requires three block tridiagonal inversions, and is equivalent to cen-
tral differencing and added artificial dissipation, [11]. An alternative is a
two factor scheme where all the positive terms and all the negative terms
are lumped together,

I+h8LA* +65B% + 62| [1+ 6JA~ + 6]B~ +61C7] (@™ - Q") = R

The two factor scheme produces a purely upper and lower triangular
matrix system and can be solved as lower/upper sweeps. The disadvantage
of the two factor scheme is that it is harder to vectorize, the recursive nature
of the sweeps making the identification of a vectorizable direction difficult.
In contrast, for the three factor scheme, each operator is one-dimensional
and can be vectorized over one of the other directions, see [7] for more
discussion.
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Figure 1.2: Newton System Analysis for 3 Factor + Scheme

Newton system analysis of these schemes is presented in Fig. 1.2 and
Fig. 1.3. In Figure 1.2, the three-factor scheme shows conditional stability
at low CFL. In these schemes, one can choose either purely first order differ-
ences, which results in an implicit block tridiagonal system. Second order
differences require an implicit block pentadiagonal solver or ane can reduce
the computational work of the implicit operator but maintain second order
steady-state accuracy by using first order differences in the implicit oper-
ator and second order for the explicit operator. This mixing of the order
of differencing also affects the stability characteristics as shown in Fig. 1.2.
(The label E1 11 refers to 1° order explicit and 1° order explicit differences,
etc.) Figure 1.3 shows results for the two factor scheme, where all forms are
unconditionally stable with the purely 1% order scheme showing the best
characteristics.

1.5 F3D &+ Flux Split Scheme

The three-factor implicit central difference scheme suffers from a bad repu-
tation resulting from the linear instability as shown above. In general, for
practical problems this doesn’t seem to be a real restriction. Nevertheless,
one would like to employ schemes which are at least stable in the linear
sense. In that regard, Ying [14], developed the Factored Three-Dimensional
algorithm (F3D) which employs flux splitting in one coordinate direction
and central differences in the other 2 directions. This produces a two factor
implicit scheme which has central difference characteristics in two coordi-
nate directions (usually the near normal and some other cross flow direc-
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tion) and an upwind nature in one direction (usually chosen in the major
flow direction). The advantages of this scheme is the two factor operator
which can be shown to be unconditionally stable in the linear constant
coeflicient case and the upwind nature of one of the operators which is usu-
ally chosen in the direction perpendicular to a shock or flow disconinuity.
Consider, for example, a blunt cone at angle of attack. The F3D scheme
would use flux splitting in the axial direction, and central differences in
the circumferential and body normal directions. Note that in inviscid su-
personic axial flow, the scheme could reduce to pure supersonic marching,
which can be very efficient.

Ying [14] choose the z direction to flux split and the resulting equations
can be written as

Qi+ 8ET +§IE + 6,F + 6,G

where first or second order differences can be employed for 62 and & and
second order central differences for 6, and é,. The “delta” form of Euler
implicit time differencing is given as

I+he A" +6,B] [1+6A +6.0](Q" —Q)=
~h (8Bt + 6B~ +6,F +6G) =0

where the 52A+ implicit operator is placed with the y operator and the
53{12{_ operator is placed with the 2 operator. This produces a two-factor
scheme which is lower block diagonal in z coupled with block tridiagonal
in y for the first operator, which can be solved by sweeping in z within an
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LU decomposition in y. The z operator is handled similarly except that
it is upper block diagonal in z and block tridiagonal in z. This produces
an efficient algorithm which does not suffer directly from the three-factor
linear instability. The first operator can be vectorized in z while the second
is vectorized in y.

Figure 1.4 shows Newton system analysis for the F3D scheme. Results
are shown for 1°¢ order upwind in z and all 2*¢ order differencing. To en-
hance the efficiency, i.e. reduce the band width of the implicit z component
of the algorithm, 1** order upwind differences can be used on the implicit
side and 2"? order on the implicit side, resulting in a 2"¢ order steady-state.
Unfortunately, this produces limited stability, although the stability range
may still be in the useful region. The above results are shown for no added
artificial dissipation in the central y and z directions. Adding artificial
dissipation improves the stability in much the same way as for the fully
central three-factor algorithm.

1.6 Summary

A class of implicit approximate factorization schemes has been examined
for stability and convergence characteristics. In general, all the schemes
suffer from some limited stability or asymptotic convergence restriction.
Practical schemes will almost always fall within this class. The uncondi-
tional instability of the three-dimensional factored scheme is one end of the
spectrum, where conditional stability can be achieved with added artifi-
cial dissipation. The F3D scheme avoids the unconditional instability, but
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in the end has similar convergence characteristics. Full Newton schemes
are currently being pursued (see [15] and [16]) for the Euler and Navier-
Stokes equations with some success. These efforts are more restricted by
the computer resources than by any numerical analysis considerations, such
as stability or consistency. At present, though, schemes such as F3D and
the 3D factored method are the most useful and practical.
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